Algorithm-4
很明显,我用了jdk的工具类,更可恨的是看了官方的解法,发现自己太弱了1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50class Solution {
//执行用时 : 15 ms, 在Median of Two Sorted Arrays的Java提交中击败了80.33% 的用户
//内存消耗 : 52.9 MB, 在Median of Two Sorted Arrays的Java提交中击败了69.29% 的用户
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int[] data3=new int[nums1.length+nums2.length];
System.arraycopy(nums1, 0, data3, 0, nums1.length);
System.arraycopy(nums2, 0, data3, nums1.length, nums2.length);
Arrays.sort(data3);
if(data3.length%2==1)
return data3[(data3.length+1)/2-1];
else
return (data3[data3.length/2-1]+data3[data3.length/2])/2.0;
}
//官方解法
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;
int n = B.length;
if (m > n) { // to ensure m<=n
int[] temp = A; A = B; B = temp;
int tmp = m; m = n; n = tmp;
}
int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
while (iMin <= iMax) {
int i = (iMin + iMax) / 2;
int j = halfLen - i;
if (i < iMax && B[j-1] > A[i]){
iMin = i + 1; // i is too small
}
else if (i > iMin && A[i-1] > B[j]) {
iMax = i - 1; // i is too big
}
else { // i is perfect
int maxLeft = 0;
if (i == 0) { maxLeft = B[j-1]; }
else if (j == 0) { maxLeft = A[i-1]; }
else { maxLeft = Math.max(A[i-1], B[j-1]); }
if ( (m + n) % 2 == 1 ) { return maxLeft; }
int minRight = 0;
if (i == m) { minRight = B[j]; }
else if (j == n) { minRight = A[i]; }
else { minRight = Math.min(B[j], A[i]); }
return (maxLeft + minRight) / 2.0;
}
}
return 0.0;
}
}